System Health Engineering and Management in Aerospace Dr. Stephen B. Johnson NASA Marshall Space Flight Center sjohns22@uccs.edu #### **Outline of Talk** - Definitions - Operational & Design Theory - Principles ## Integrated System Health Engineering & Management - ISHEM = the processes, techniques, and technologies used to design, analyze, build, verify, and operate a system to prevent faults and/or mitigate their effects - Technical, individual, and social aspects - Synonym: Dependable System Design and Operations - "Dependability" ### Complexity - Beyond the capability of any one person to understand or keep track of all details - Heterogeneous (power, propulsion, etc.) - Deep: requires many years of study to master - Scale: the system requires so many components that it is impossible for any one person to keep all in mind - Interactivity: interactions between internal components, and with the external environment are "messy" ### **Implication of Complexity** - By definition, beyond what any one person can master (our cognitive abilities are limited) - REQUIRES communication among individuals - Implication: - Engineering of a "complex" system requires excellent communication and social skills #### **Failure** - "A loss of intended function or performance of an unintended function." - Can be designer's or user's intent - Failure is both individually and socially defined - "in the eye of the beholder" - Some "failures" are considered normal by others #### **Faults and Errors** - Fault: The physical or logical cause of an anomaly. - The "root cause", can be at various levels - Might or might not lead to "failure" - Anomaly (error): A detectable undesired state. - The "detector" must ultimately interpret the "state" as "undesirable" - Can be user, designer, others #### **Causes of Faults and Failures** - Individual performance failure (cognitive) - Lack of knowledge (unaware of data) - Misinterpreted data - Simple mistakes (transposition, sign error, poor solder, etc., usually from human inattention) - Social performance failure (communicative) - Miscommunication (misinterpretation) - Failure to communicate: information exists, but never got to the person or people who needed it ### Embedded Knowledge - Technologies are nothing more than "embedded knowledge" - Technologies embody (incarnate) the knowledge of their creators - "Faults" result from flaws in the knowledge of the creators, OR mismatch in understanding between creators and users - Cognitive or Communicative! ### ISHEM Functional Relationships - Circular, "closed-loop" relationships - Hints at the physical architecture ### ISHEM Operational Architecture ### Typical Functions, Mechanisms, and Characteristic Times | Function | Physical Mechanism | Characteristic Time | |-------------------------------------|--|-----------------------------| | Electrical Power | Electron transport | 1-10 milliseconds | | Attitude Control | Thruster impulse or reaction wheel acceleration | 50-500 milliseconds | | Spacecraft Thermal
Control | Radiative Heat Transfer | Minutes to hours | | Human autonomic response | Biochemically-induced electrical signals | 500 milliseconds – 1 second | | Human decision-making | Verbal and visual signals between humans, and brain physiology | Minutes to days | | Data computation | Electron transport and processor cycle times | 10-100 milliseconds | | Planetary probe radio data transfer | Electromagnetic waves | Seconds to hours | # ISHEM in the System Life Cycle | | Initial
Requirements | Conceptual
Design | Preliminary
Design | Detail
Design | Fabrication and Test | Deployment &
Operations | |------------------------------|---|---|--|--|--|--| | Quantitative
Requirements | Reliability AllocationAvailabilityMargin PhilosophyTime to Criticality | MTTR Req't System TTC Timing
Req'ts Margin Allocations | Subsystem TTC Timing Req'ts Margin Req'ts Reliability Req'ts | Final Margin &
Reliability Req'ts | Requirements Updates | Requirements Updates | | Qualitative
Requirements | System FT Req'tsSystem FA Req'tsIsolationFault Classes for FT | Subsystem FT Req't Subsystem Functional Fault Req't | Fault Injection Req'ts SW, HW, Operations Req'ts | Final System/
Subsystem/
Component Req'ts | Requirements Updates | Requirements Updates | | Fault Set Definition | Fault Classes Major Implementation Fault Types (Engine Out, Electronics,) | Subsystem Functional Faults (Top Down) | Preliminary FMEA
(Bottom Up) Preliminary Fault
Set Reduction for
Fault Injection | Final FMEA Fault Set Reduction for Fault Injection | Updates to Fault Set | Updates to Fault Set | | Fault Analysis &
Modeling | System Cost /
Reliability Trades Testability Analysis | System Interaction
TTC Analysis Functional Fault
Matrix Initial Behavioral
Model | Detailed Sys. Mod. Detailed Rel. Anal. Simulation with
Fault Injection Cost / Reliability
Anal. for Params. | Simulation with
Fault Injection False Alarm
Analysis | Fault Injection into
As Built System System
Characterization Model Updates | System Characterization Model Updates Fault and Contingency Analyses | | System Design | Initial System Concept Operations and Maintenance Concepts | Initial Subsystem Concept ECR/FCR Definition at Function Level | Detail ECR/FCR Parameter, Algorithm, and Sensor Selection | Final Design Threshold Determination | Design Feedback Threshold Adjustment from System Characterization | System Characterization Design Updates Contingency Plans | | Verification &
Validation | | V&V Plan Draft for
SHM Allocation of V&V
Methods: Test,
Analysis, Proof,
Simulation | Incorporate Prelim
FMEA into V&V Define Fault Inject
Techniques Proof of Key
Algorithms | Test Procedures V&V by Analysis,
Simulation, Test,
and Formal Proof | Subsystem and
System Testing
Under Stressing
Conditions & Fault
Conditions | Testing Updates | ### Principle of Knowledge Redundancy, and Limits - Checking for failure or faults requires a separate, independent, credible knowledge source - Commonality means that reviewers share common assumptions with the reviewed - Independence means reviewers share nothing in common with the reviewed - Complete independence neither possible nor desirable ### Clean Interfaces - Desired and sometimes required - Reduce the "interactivity" between components - Reduce the interactivity of the people and organizations designing and operating the components - Simplifies communication, reduces chance for miscommunication! ### **Bureaucracy and "Situational Awareness"** - Bureaucracy needed to institute and repeat processes for dependability - Bureaucratization: repetition and suppression or forgetting of reasons behind the rules leads to inattention or misunderstanding, and hence to faults - Must foster individual "awareness" within the bureaucracy... create bureaucracy to fight the deadening effect of bureaucracy! #### Conclusion - NASA has a "culture problem" that leads to occasional failures - The problem is social and cognitive as well as technical - ISHEM to be the overarching theory over the technical, social, and cognitive aspects of preventing & mitigating failure - We are working to install / instill ISHEM into the new Vision for Space Exploration